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Machine learning (ML) is one of the most acclaimed areas of science
and technology, leading to countless real-world benefits, from industry
to healthcare. ML involves creating algorithms to perform specific
tasks by recognizing patterns in the data and without requiring exten-
sive instructions, namely without being explicitly programmed. This
possibility has recently attracted the attention of a broad community of
scientists interested in learning, controlling, and making optimal use of
quantum systems of increasing complexity,1,2 potentially leading to
revolutionary progresses in many fields.

Quantum metrology is among the most promising branches of
quantum-enhanced technology.3,4 It studies the design and engineering
of quantum probes, noise resilient evolution and optimal measurements,
in order to enhance the estimation of physical parameters beyond
the current state-of-the-art. Applications in optics5 include imaging,
biological sensing, interferometry and gravitational wave detection.
In realistic scenarios, resources (e.g., time, energy, number of particles,
etc.) are always limited. These constraints pose important challenges in
quantum metrology that can be successfully faced by taking advantage
of the ML techniques and ideas developed in recent years.

First, every quantum metrology device needs to be calibrated. It is
crucial to understand how the statistics of the measurement outcomes
depend on the parameters of interest. It has been shown that a deep
neural network trained with a relatively modest amount of calibration

data is able to capture very efficiently the connection between measure-
ment results and parameter values.6–9 Supervised learning can provide
estimators6–8 or Bayesian posterior distributions,9 without requiring a
precise mathematical modeling of the system. In fact, due to imperfect
state preparation, uncontrolled noise effects and coupling to the envi-
ronment, simple models of quantum operations are hardly faithful and
can introduce biases affecting the accuracy of the device. Furthermore,
it is important to identify strategies, based on measurement results ac-
quired during the estimation process, to steer the probe state, the param-
eter encoding evolution, and/or the measurement observable toward
a configuration of maximal sensitivity. Reinforcement learning can be
very efficient for disclosing nontrivial adaptive policies for feedback
control.10–16 This general technique searches for optimal solutions to
a complex problem based on trial-and-error actions and subsequent
rewards.

As reported recently in Advanced Photonics, Cimini et al.17 intro-
duce a black-box approach to optical multiphase estimation where
the experimental device is assisted by an ML agent only processing
bare data (see schematic in Fig. 1). The information about the phases
to be estimated is continuously updated, depending on the Bayesian
distribution that a trained deep neural network associates to each mea-
surement event.9 Furthermore, reinforcement learning is used to find an
efficient experiment-design heuristic for Bayesian estimation15 in order

Fig. 1 A general quantum metrology device consists of quantum state preparation, parameter-
encoding evolution and measurement. Here, the device is equipped with an ML agent. The agent
associates to each measurement result μ a Bayesian distribution PðϕjμÞ obtained from a neural
network trained with calibration data. When acquiring repeated measurement with results μ1;…μm ,
Bayesian distributions are multiplied, updating the prior knowledge about the unknown parameter
ϕT . Finally, the agent chooses computes a phase ϕC for an adaptive feedback control of the
device. Notice that ϕT and ϕC can be single- (as in the schematic here) or multivalued (as in
the experiment of Cimini et al.17).
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to optimize the experimental setting (here in the form of adjustable
phase shifts), based on the current knowledge of the parameter and
available resources. The combination of the two techniques is an
example of deep reinforcement learning1,2 applied here, for the first
time, to optical quantum metrology. The method achieves better
performances than more conventional techniques not based on ML.
It is, finally, important to emphasize that the complexity of multi-
parameter estimation raises quickly with the number of unknown
parameters, and advanced numerical methods such as those demon-
strated by Cimini et al. are necessary to efficiently handle challenging
applications in imaging and sensing.
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